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for the Full-Wave Scattering Parameter
Analysis of Waveguiding Structures

Jan Ritter, Member, IEEE, and Fritz Arndt, Fellow, IEEE

Abstract— A combined finite-difference time-domain/matrix-
pencil method is presented for the efficient and rigorous calcu-
lation of the full-wave modal S-parameters of waveguide com-
ponents including structures of more general shape or high
complexity. The application of the S-parameter definition for
unmatched ports requires merely standard Mur’s absorbing
boundaries for reliable results, and a nonorthogonal or contour
path mesh formulation allows the convenient inclusion of curved
boundaries. The efficiency of the method is demonstrated at the
analysis of waveguide and monolithic microwave millimeter wave
integrated circuit (MMIC) components of practical importance,
such as the twisted waveguide, the twisted waveguide bend, the
post compensated magic T, the waffle-iron filter, and the MMIC
spiral inductor including an air bridge. The method is verified
by excellent agreement with measurements, with finite element
method (FEM) or moment method resullts.

1. INTRODUCTION

HE advanced design of waveguide components is increas-

ingly based on rigorous field theory methods [1]-[12].
Many common elements which are compatible with the Carte-
sian or cylindrical coordinate systems can be simulated directly
with the efficient mode-matching method [1]-[4]. However,
there is growing interest in structures of more general shape.
These offer, for instance, the advantage of more compact size,
such as twisted bends, or the potential of improved designs by
additional design parameters, such as the partial height post
compensated magic T. Appropriate CAD methods for such
structures are therefore very desirable.

Several different techniques have already been applied so
far. Miter compensated T-junctions are investigated by a finite
element method (FEM) in [5]. A boundary-contour mode-
matching method [6] has been used for a class of arbitrarily
shaped H- and E-plane discontinuities. Due to its high flex-
ibility, however, the finite-difference time-domain (FDTD)
method is considered to be particularly well applicable for
more complex waveguiding structures.

Typical waveguide elements hitherto investigated by the
FDTD method are inductive irises or inductive iris filters [7],
[9], transitions and T-junctions [8], H-plane couplers [10],
H-plane corners with inductive posts [11], and cylindrical
cavities [12]. It indicates that mostly step type structures have
been analyzed so far (which have been calculated also by the
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mode matching technique before). This seems to be mainly
due to well-known problems in the usual FDTD simulation
of waveguide elements. These are typically the large number
of required time steps, the existence of resonant cavities,
the lack of general and efficient absorbing boundaries, the
lack of adequate S-parameter extraction techniques also for
higher-order modes, as well as the occurrence of curvilinear
structures. Resonant cavities, in particular, require a long time
response which leads—in combination with convolution-type
absorbing boundary conditions-—to a very high computational
effort.

This paper presents an improved FDTD technique which
allows the very efficient full-wave modal S-matrix calculation
of a comprehensive class of general waveguide structures, such
as twisted bends, post compensated magic T’s, and waffle-
iron filters (Fig. 1). Moreover, the convenient applicability
of the presented technique also to the scattering parameter
calculation of more complex monolithic microwave millimeter
wave integrated circuit (MMIC) structures is demonstrated at
the example of a spiral inductor with an air-bridge (Fig. 1).

Typical problems occurring in the usual FDTD simulation
of waveguide elements are solved successfully by adequate
techniques.

1) In order to reduce the high computational effort resulting
from the usually required large number of time steps, the
efficient matrix pencil technique [13] is utilized. This
technique needs less CPU time and is less sensitive
to noise influences than, for instance, the often used
Prony’s method [14], [12].

2) The application of the modal S-parameter definition for
unmatched ports [29] achieves even with standard Mur’s
absorbing boundaries excellent and reliable results.

3) A structure dependent mesh is used based on nonorthog-
onal [15] or contour path grid cells [16], respectively,
according to the specific form of the boundary.

II. THEORY

The powerful combination of the FDTD method for
Maxwell’s equations [15]-[17] (or in its vector wave equation
form [18]) and the matrix pencil technique [13] is used for the
full-wave analysis waveguide structures of more general shape.
This technique avoids the drawbacks of the slow convergence
of the standard fast Fourier transform (FFT) formulation, and
of the very small time increments, when applied to structures
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Fig. 1. Typical structures investigated with the improved FDTD technique:
Twisted 90° bend, compensated magic T, waffle-iron filter, MMIC spiral
inductor.

which are small compared with the wavelength. Since the
basics of the FDTD formulation are well known, only the
additional aspects, utilization of the matrix pencil method and
the generalized S-matrix technique, are treated in more detail.

A. Matrix Pencil Technique

Like for Prony’s method [14], [19], [20], the time transient
wave form is approximated for the matrix pencil technique
[13], [21], [22] by a sum of damped complex exponentials

Yr = T + Nk
M

— Z ‘the(at+]wt)k+J¢t + ny,
t=1
M
=) bezf + o))
t=1
where £ = 0,1,..., N — 1 is the time index, n; indicates

additional noise. The z = e*Ti%: are the poles, and b; =
|b¢|e??t denote the residuals of the noiseless time signal x.
The basic idea of the matrix pencil method, and the significant
difference in comparison with Prony’s method, is to formulate
an eigenvalue problem for the determination of the poles z;,
t=1,---,M.
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With the data vectors x; of length N — L for the noiseless
signal zy,

Ty = [Ty, o1, IN—Lpt—1)” - )
The matrices X and X; are defined

Xov—rp)xL = [Tr—1, TL—2,",%0) 3

XyN-L)yxL= [TL, Tp_1," -, 21]. @)

Every pole 2z, t = 1,---, M reduces the rank of the “matrix-
pencil” X; — 2z:Xo exactly by one [13], if the “pencil-
parameter” L is chosen to be M < L < N — M; in this case,
the matrix-pencil X; — z; X is of rank M — 1. Otherwise, the
rank of the matrix-pencils remains M. This means, that cach
pole is an eigenvalue of the generalized eigenvalue problem

(X1~ 2X0)g; =0 (5)

with nonquadratic matrices, if L is chosen to be M < L <
N — M. Equation (5) is transformed into a standard eigenvalue
problem of a quadratic matrix by multiplication from left with
the pseudo inverse [23] X of the matrix X,

(X§ X1 —2zI)g, =0 6)

which does not change the eigenvalues and -vectors. With
(6), the z; are exactly the M nonzero eigenvalues of the
matrix X(f X;. Since the matrix X(}L X is of rank M, there
are additional L. — M zero eigenvalues.

For the noisy signal, analogously to Xy, X1, the matrices Y,
Y; are defined, and the eigenvalue problem can be formulated
in the same way as in (5). In contrast to the noiseless case,
the data matrices Yy, Y7 might have the full rank P =
min (N — L, L) even if the signal contains only M < P
poles. Therefore the transformation of the matrix-pencil into
a standard eigenvalue problem of a matrix of rank M is
performed by the multiplication with the “truncated pseudo
inverse matrix” YO+ [23]. To obtain an estimation of the
number of poles M of the noisy signal and to compute
the truncated pseudo inverse of the noisy data matrix Y, a
singular value decomposition (SVD) [25] Yy = UXVEH is
carried out, wherein ¥ is a diagonal matrix containing the
singular values, and U, V are the corresponding orthogonal
basis vectors of the mapping- and the null space. The pseudo
inverse can be expressed by the matrices of the SVD: with the
SVD of an arbitrarily complex matrix A of the rank Rk (D),

A=UXVHE ¥ = [D 9|, where pseudo inverse is defined

o o)
as AT = VDTIUH [23).
For the computation of the truncated pseudo inverse, only
the M largest singular values in the diagonal matrix X
are used; all other elements are set to zero, so that the
resulting truncated pseudo inverse matrix is of rank M. For
the calculated examples, the limit for the lowest considered
singular value oas has been chosen to be o4 - 10~8 (where o1
is the largest singular value), which determines the number of
the poles M. Because the corresponding rows of the matrix
V and columns of the matrix U¥ related to the zero diagonal
elements of ¥ do not contribute to the pseudo inverse, the



2452
0 -
S11, MATCHED LOAD M-P, 1280 DT— — -
-104 5] M-P, 1280 DT — -
/—[ UNMATCHED 10AD ) 1T 16384 DT -~
—0F \Sl\l' N FEM/MM - - 1
1280 DT -

DFT,

125 13

115 12

8 85 9 95 10 105 11
Fig. 2. Return loss of a 90° twisted rectangular X-band waveguide.
FDTD-Matrix-Pencil-method, 1280 At (——), comparison with FDTD-FFT
for 16384 At (---), FEM/MM results (----), FDTD-DFT results (¢ ¢) for
1280 At and the standard matched-load S-parameter extraction procedure

(----). Dimensions: WR90 waveguide, 22.86 x 10.16 mm, length of the
twisted region: 31.75 mm. Applied discretization: 38 x 17 X 104 cells.

dimensions of these matrices are reduced accordingly, and the
reduced matrices designated with Vo and U, respectively.

In the corresponding eigenvalue problem which is analogous
to (6)

Y5 Yig, = #q, ()

the truncated pseudo inverse YOJr is given by the reduced
matrices of the SVD Ygt = VoD~ 'U¥, which results in

VoD7'UE Y g, = 4, (8)

Because ViV = Iy and ¢, = Vi Vg, the multiplication
of (8) from left with V' leads to

DUV (Vi ;) = 2(Vi q,). 9)

The eigenvalues z; are determined by the eigenvalue prob-

lem for the asymmetric M x M matrix
Zp = DT'UENV,. (10)

With the then known poles z;, the residuals b; are immediately
given by the solution of the least squares problem

mbinHZNb—yH, with (11
29 23 2%
1 1 1
z 2 z
ZN — 1 2 M
N-1 ,N-1 .  ,N-1
21 %2 M

which requires merely the SVD of the matrix Zy.

For the application of the matrix pencil technique to FDTD-
time signals, first the number of signal poles at the calculation
of the pseudo inverse matrix Y0+ is determined by the chosen
minimum value of o > o - 1076,

Since the FDTD time signals are very oversampled, only
every (Nskip + 1)th value is considered for the matrix pencil
formulation. This undersampling is usually determined by the
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Fig. 3. Return loss of a 90° twisted 90°-bend, obtained with FDTD ma-
trix-pencil-method, 4500 At (—), compared with FDTD-FFT results for
16384 At (---), FDTD-DFT results for 4500 At (¢ ¢), and FDTD-FFT
results (----) utilizing the matched-load S-parameter extraction procedure.
Dimensions: WR90 waveguide, A = 22.86 x 10.16 mm, bend-radius: 2A.
Discretization: 34 x 16 x 202 cells.

maximum frequency of interest.! Generally, Nsiip has to be
selected so that the estimated number of poles M is less than
the half of the totally involved time steps Ny p.

The spectrum of the time signal can now be expressed in
terms of poles and residues according to

oo ’ bt
F(w ; Z UJ + SWmax — Wt) -

where' wmay = % denotes the spectral period, At is the
timestep of the undersampled signal and C is a constant
resulting from a DIRAC-impulse in the time-signal at ¢ = 0.2

Due to the undersampling of the time-signal and the fact
that a pole represents an infinite spectrum, in practice, a large
number of spectral periods have to be taken into account to
obtain a convergent value for F(w). Especially poles with
large attenuation constants, representing the very short portions
of the time signal, cause the slow convergence behavior of
F(w). Therefore these poles are isolated from the sum in (12).
Because of their fast converging time domain representation
they are transformed separately to the frequency domain by
a DFT.

-+ c 12

B. Modal S-Parameter Extraction

In order to obtain accurate results even when using standard
first order absorbing boundary conditions, the unmatched port
S-parameter definition [29] is applied, where in the case of a
general N-port discontinuity, one has to consider a system of
N equations in the form

B =S4 (13)

where B = (by, ba,---,by) is a matrix formed by N different
b-vectors and A = (a1, a,---,ay) is a matrix formed by N
different a-vectors. The desired modal S-matrix is obtained by

I'This may require a preceeding lowpass filtering of the original FDTD
signal

yn can be expressed by the sum of an even and an odd function plus
6nyn where 6, =1 n=0,6, =0 n#0.
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Fig. 4. Waffle-iron filter of Matthaei, Young, Jones. (a) Verification of the FDTD-matrix-pencil results (——), (----) with the FE/MM method (---),

(-

Dlscretlzauon 710060 cells in nine grids.

the multiplication of (13) with the inverse of matrix A, from
the right side.

The N different vectors a and b, respectively, are calculated
by N appropriate simulation runs, each considering a different
condition, e.g., the excitation of a different port. If more
then one mode is present on a port of the structure under
investigation, an extraction of the modal guided power has to
be performed. For that purpose, we use the orthogonal mode
properties similar to [24]. The required modal field distribution
can be obtained by using the compact 2-D FDTD approach
[26], or by analytical formulations in the case of rectangular,
circular, or elliptic waveguide ports.

The transversal electric field FZ-obtained by the three-
dimensional (3-D) FDTD method at the position z of port
j can be written in the form

M
)= Zé’ip(af, e + bl e TR

p=1

Bz (14)
where etp is the transversal field distribution of the electric
field of the mode p at port j, and aJ bJ are the modal

amplitudes. With ﬁ{q representing. the transversal magnetic
field distribution of the mode ¢ at the same port, the following

-field distributions é‘{q and R

integration along the cross section A; of port § has to be

-). (b) Comparison with the standard matched load approach (---) , (65535 timesteps) and ({ ), (16 384 umesteps) Dimensions: see [28].

performed

1 o -
E;//Aj Bi(z) x ki, dva

A F e
_a;.e YoZ 4 bl et

= wy(2). (15)
The normalization constant d, is calculated from the modal

1> DY the following equation

// &, x hi, dvs.
A

J

d, = (16)
Since the propagation constant ~y of each mode is also obtained
by the 2-D FDTD calculation step or analytically known,
the incident and scattered modal amplitudes a, bg can be
determined by the following two equations involving the
evaluation of (15) at two cross sections z = 0 and z = Az

of port j

i wi(z) —wi(z + Az)e=7aR* -
aq - 1— e—Q'quz (
j j Az
b wl(z) — wi(z + Az)et? 18)

q 1— e+2'yq Az
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Fig. 5. Matched magic T. (a) Comparison theory (
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), (- -+), (- --) with measurements ({+ ) at the unmatched magic T. Dimensions: WR90 waveguides.

Discretization: 97920 cells in three grids. (b) Influence of additional matching elements, post and asymmeltric iris, on the 3 dB and isolation behavior.
(c) Influence on the return losses. (d) Influence of different post heights and of an additional plate. Dimensions: 1"x 0.5' waveguides. Discretization:

100224 cells in three grids.

In the case of homogeneously filled waveguide ports, the
eigenvectors &, and I_iiq are frequency-independent, so that
the modal extraction in (15) can be performed more efficiently
in the time domain. The matrix-pencil method is then applied
to obtain the poles and residues of the time signal. After that
the frequency dependent modal amplitudes wg are calculated

from the poles as described earlier.

III. RESULTS

In all investigated cases, the whole time interval for the
FDTD simulation is chosen to be approximately four times
the value which an exited wave needs to cross the structure
under investigation. The first example is a twisted rectan-
gular X-band waveguide in Fig. 2. Very good agreement
with own finite element/mode-matching (FE/MM) calculations
[27] is shown by using the described modal unmatched-
port S-parameter technique. In contrast to the application
of a 16384-FFT, merely the first 1280 time iterations are

required by using the matrix pencil technique, N, = 1
was used. A comparison of the matrix-pencil results with
DFT-results, obtained with only 1280 time steps is shown
in Fig. 2 also. It can be seen, that the S-parameters from
the DFT are not yet convergeht; it also should be men-
tioned that the knowledge of the poles and the residues
of the signal enables the calculation of the frequency do-
main data at arbitrary frequency, this is an additional ad-
vantage over the discrete Fourier transform methods where
the frequency is discrete with Af which decreases with
increasing total simulation time. For the standard matched-
load S-parameter extraction technique (dot-dashed lines), only
good agreement at the matched frequency (12 GHz) of the
applied 1st-order ABC’s may be stated. The same is true
for the twisted 90°-bend, Fig. 3, the second example. Here,
a value of three was used for Ngp,. For the examples in
Figs. 2 and 3, a nonorthogonal mesh has advantageously been
chosen.
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Fig. 6. Spiral inductor with an air bridge according to [30]. (a) Dimensions.
(b) Verification of the FDTD/matrix-pencil results (——) with the MPIE-MoM
results (- --) and comparison to FFT results (---) after 8192 time steps (total
FDTD-matrix-pencil time samples: 500, Ny, = 16). Discretization: 28 X
100 X 169 cells.

The next example is a waftle-iron filter with the dimensions
given in [28]. Good agreement with the FE/MM results may be
stated again, Fig. 4(a). Also here, the standard matched load
approach is only valid for exactly the matching frequency, cf.
Fig. 4(b). Fig. 4(c) demonstrates that only 15000 time steps
(Nskip = 10) are required for exact S-parameters as compared
with the more than 65 000 time steps required by the traditional
FFT.

A matched magic T for an X-band waveguide is chosen in
Fig. 5. Fig. 5(a) demonstrates the excellent agreement between
theory and measurements for the empty magic T. Additional
matching elements, an asymmetric iris in port four and a
circular post of partial height h, improve the 3 dB and
the return loss behavior significantly, Fig. 5(b) and (c). The
influence of the post height is demonstrated in Fig. 5(d)
an additional plate provides an additional parameter for a
frequency shift of the return loss curve.

In order to demonstrate the convenient applicability of
the presented FDTD/matrix-pencil method also for the effi-
cient calculation of scattering parameters of more complicated
MMIC structures, a spiral inductor with an air bridge [30] is
chosen (Fig. 6). Good agreement with the SDA results of [30]
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and with results obtained by a space-domain MPIE technique
may be stated.

IV. CONCLUSION

A very efficient FDTD/matrix-pencil technique is presented
for the analysis of waveguiding structures of nearly arbitrary
shape. The method requires less numerical effort than, for
instance, the often used combination with Prony’s method. The
application of the modal S-parameter definition for unmatched
ports achieves even with standard Mur’s absorbing boundaries
excellent and reliable results also for the higher-order modes.
A structure dependent mesh is used based on nonorthogonal or
contour path grid cells, respectively, according to the specific
form of the boundary. The proposed method is verified by
excellent agreement with measurements, with FE/MM, or
moment method results.
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